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Abstract 
 

The measurement of the key product quality index plays an important role in improving the 

production efficiency and ensuring the safety of the enterprise. Since the actual working 

conditions and parameters will inevitably change to some extent with time, such as drift of 

working point, wear of equipment and temperature change, etc., these will lead to the 

degradation of the quality variable prediction model. To deal with this problem, the selective 

integrated moving windows based principal component regression (SIMV-PCR) is proposed 

in this study. In the algorithm of traditional moving window, only the latest local process 

information is used, and the global process information will not be enough. In order to make 

full use of the process information contained in the past windows, a set of local models with 

differences are selected through hypothesis testing theory. The significance levels of both T - 

test and 2 - test are used to judge whether there is identity between two local models. Then 

the models are integrated by Bayesian quality estimation to improve the accuracy of quality 

variable prediction. The effectiveness of the proposed adaptive soft measurement method is 

verified by a numerical example and a practical industrial process. 

 

 

Keywords: Adaptive Variable Prediction, Moving Window, Bayesian, Hypothesis Testing, 

Selective Integration 
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1. Introduction 

With the rapid development of modern industry, factories have higher requirements on the 

production quality and efficiency of products, which makes the accurate measurement of the 

relevant important parameters in the process become particularly critical [1]. Soft 

measurement technique is a method to predict and estimate quality variables by establishing 

mathematical models between key quality variables and easily measurable process variables. 

The traditional measurement method is mainly based on mechanism modeling, which requires 

a clear understanding of the mathematical relationship between process variables and quality 

variables. In fact, most industrial processes have complex platform structures and 

technological processes, so it is often difficult to obtain the process mathematical models 

accurately [2]. Data-driven modeling methods do not need to accurately understand and 

describe the industrial process, but directly use the internal information between the process 

data to establish the mathematical model between the leading variable and the auxiliary 

variable, which is also known as the black box modeling method [3]. With the installation of 

a large number of sensors on the process platform and the application of intelligent instruments, 

distributed control system (DCS) and computer storage technology, massive process data can 

be collected and stored, which lays a foundation for data-driven modeling methods.  

Nowadays, the widely used linear regression modeling methods mainly include principal 

components regression (PCR) [4] and partial least squares (PLS) [5]. PCR is a modeling 

method that uses principal component analysis (PCA) [6] to extract the characteristics of the 

input variable space and then utilizes the least square regression (LSR) to establish the 

regression model between the quality variable and the principal component characteristics. 

PLS is also a feature dimensionality reduction regression method, which simultaneously 

extracts the principal component features from the input and output space and guarantees the 

maximization of the covariance of the feature vectors of the input and output space [7]. The 

advantages of PCR and PLS are simple structure and easy implementation. In addition, there 

are a lot of commonly used nonlinear modeling methods, such as artificial neural network 

(ANN) [8] and Gaussian process regression (GPR) [9]. Compared with linear modeling, the 

nonlinear has higher complexity but stronger generalization ability. ANN does not need the 

prior knowledge of the research object, and it has great advantages to deal with complex and 

changeable industrial processes. GPR is a new machine learning method based on Bayesian 

theory and statistical learning theory, which is suitable for dealing with complex regression 

problems such as high dimension, small sample and nonlinearity and its output has 

probabilistic significance, however, it is necessary to consider the complexity of calculation, 

noise following Gaussian distribution and other problems [10].  

In the recent literature, Bayesian regression [11] and deep learning have gradually 

become the focus of research. The quality variable prediction model based on bayesian 

network (BN) [12, 13] can solve the uncertainty relationship in the process and effectively 

solve the problem of missing data. However, in the process of model construction, the training 

process of bayesian network parameters is quite complex, even if the gaussian mixture model 

is used to approximate the conditional probability in BN, it is still in a state of huge 

computation [14]. Constantly updating the model requires constant recalculation of network 

parameters, which is obviously uneconomical and impractical. For deep learning [15], a large 

number of data samples are needed to train the model in the construction of regression model, 

which has a high requirement for the number of data samples. Moreover, when the data volume 

reaches a certain degree, whether a series of drift has occurred in the industrial process will 

affect the prediction accuracy [16, 17]. 
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In the process of constructing the model of quality variable prediction, PCR is one of the 

most popular methods, because of its simple structure and fast response time. For factory 

production, high efficiency and low cost are important factors for choosing principal 

component regression as soft measurement method [18]. With the increasing complexity of 

industrial processes, process variables inevitably show a high-dimensional trend. However, 

there is correlation between these variables, so dimensionality reduction of data to find the 

main causal relationship between variables is essential [19]. By using linear transformation, 

PCA replace multiple variables in the data with a set of independent comprehensive indicators. 

In this way, important information will not be lost, and the collinearity problem between 

variables is avoided, which is convenient for further analysis. At the same time, the 

computational complexity of soft measurement process can be reduced to some extent. 

One of the most important problems need to be overcome for quality variable prediction 

is the model performance degradation caused by the drift of process characteristics [20, 21]. 

The most obvious result of model degradation is a decline in prediction accuracy, mainly due 

to factors such as catalyst deactivation, mechanical aging, changes in operating environment, 

and even climate change [22]. Therefore, in order to improve the prediction accuracy, an 

adaptive soft measurement method is proposed to update the model with new measurement 

data in industrial applications [23, 24]. Up to now, most adaptive soft measurement processes 

have been built on just-in-time learning (JIT) [25-27], time difference (TD) [28] or moving 

window (MW) [29, 30]. JIT model is widely used in soft sensor with selected sample data set. 

The local prediction model is established by selecting training samples similar to the query 

samples in the historical sample set. As the computer's data storage capacity grows, the JIT 

needs to select the data set containing the entire process information from the distributed 

control system (DCS) database. In general, the size of the selected dataset is very large, and 

searching for similar samples from it is always time-consuming. Meanwhile, the JIT model 

ignores the correlation between process variables. And the prediction performance depends on 

the similarity measurement of relevant samples to a great extent. Over the past few decades, 

different similarity measures have been developed for sample selection. However, each 

method focuses on only one aspect of sample similarity and has its own limitations. Moreover, 

the JITL model based on correlation may sometimes be unable to select the appropriate model 

to analyze the actual process data. The TD method is able to generate the output without 

reconstructing the model and eliminate the variation of the value due to the deviation caused 

by the drift of some process variables. However, traditional TD models cannot take into 

account nonlinear processes, except in combination with physical models or some nonlinear 

modeling techniques, when the relationship between process variables and quality variables 

changes, TD methods are no longer applicable. MW updates the window dataset by merging 

the latest data samples while discarding the oldest. Each time the window is updated, the latest 

information of the industrial process is obtained, and the new model can be built to describe 

the current state more effectively, even if the working conditions begin to change. 

As mentioned above, the final choice is to propose improvements based on the strategy 

of MW. In the traditional moving window, only the window data closest to the query sample 

is selected, and a local model is established to predict the quality variable. Whenever the 

window moves, create a new local model and discard the old model. A single local model 

contains only part of the process information, which can lead to the deviation of quality 

variable prediction. Therefore, in order to cover as much process information as possible, the 

concept of selective integration local models is proposed [31, 32]. There are two advantages 

to an adaptive strategy based on MW. On the one hand, considering that the working state will 

drift with time, the latest window can grab the information of the current process state in 
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industrial production. On the other hand, MW can be used to divide the data according to the 

characteristics of the sequential data set, when the state is stable in a certain period. Then, 

multiple local state data areas can be divided and corresponding local models can be 

established. This can lay the foundation for subsequent model integration phases. Divide-and-

conquer strategy adopted in the integrated learning method can solve both nonlinear and time-

varying process problems [33]. The integration process is to obtain more process information 

to improve the generalization ability of the model [34]. Then, the selection of this set of local 

models need to be considered. If only a group of adjacent local models are integrated, there 

are multiple models containing similar local process states, which is not conducive to the 

description of the global process and will result in the poor predictive ability of the integrated 

model. Therefore, it is necessary to use the hypothesis testing principle to screen out a set of 

local models with differences, which can make the integration model to have better 

generalization capability. 

To sum up, in order to solve the problem of dynamic in industrial process, a method for 

selective integrated moving windows based on PCR (SIMV-PCR) is proposed to improve the 

accuracy of quality variable prediction. At first, by using the adaptive strategy of MW, the 

global process is divided into several local modules. Then, for each local module, PCR is used 

to establish the multivariate linear regression relationship between process variables and 

quality variables based on rapidity and economic factors. By using the hypothesis testing 

principle, the identity of two local modules is compared and a group of different local modules 

is selected, which means that the integrated model can contain more process information. After 

the local modules are selected, their corresponding models are integrated using Bayesian 

estimation rules. Finally, the integrated model is used to predict the query samples.  

The rest of this article is organized as follows. The second part briefly introduces the 

related work, including the principle of hypothesis testing and the principle of multiple linear 

regression based on PCA. In the third part, the soft sensor development based on SIMV-PCR 

is described and analyzed in detail, including selective update strategy of local model and 

integrated learning strategy. In the fourth part, the numerical case and industrial process case 

are used to study and the performance comparison between SIMV-PCR and other adaptive 

soft measurement methods is reported. Finally, our work ends in section 5. 

2. Preliminaries 

This section will briefly describe the principle of hypothesis testing and briefly review multiple 

linear regression prediction methods based on PCA.  

2.1 Hypothesis Testing 

Hypothesis testing is a method in mathematical statistics to infer the population from samples 

based on certain assumptions, the basic idea of which is the thought of small probability proof 

by contradiction. The steps are as follows: 

(a) Make an assumption about the population under study according to the needs of the 

problem, and call it 
0

H ; 

(b) Select the appropriate statistic so that the distribution is known when 
0

H  is assumed 

to be true; 

(c) From the measured samples, the values of the statistics are calculated and tested 

according to the significance level given in advance to make the judgment of rejecting or 

accepting the hypothesis 
0

H . 
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Hypothesis testing, also known as significance testing, rejects 
0

H  when the actual data 

deviates significantly from the theoretical hypothesis. Deviation to a significant degree is 

usually specified by a very small positive number   such as 0.05, 0.01 so that when 
0

H  is 

correct, its probability of rejection is no more than  , which is called the significance level.  

2.2 Multiple Linear Regression 

PCR is a modeling method that uses PCA to extract the characteristics of the input variable 

space and then utilizes multiple linear regression to establish the relationship between the 

characteristic matrix and the quality variable. Through linear transformation, principal 

component method combines the original multiple indicators into a few independent indicators 

that can fully reflect the overall information, so as to avoid collinearity among variables 

without losing important information and facilitate further analysis. Each principal component 

extracted from principal component analysis is a linear combination of the original multiple 

indexes.  

First of all, assuming the number of data samples collected is n , the number of process 

variables is s , then, the process variables can be expressed as
1 2[ , ,..., ]sX x x x= . 

By establishing the initial factor load matrix, the principal components can be expressed 

as 
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in the formula: 

i
z — Intermediate variable obtained by process variables through a specific linear 

combination relationship; 

ija — The coefficient of 
jx  for 

i
z . 

By standardizing the sample data, and the correlation coefficient R  is obtained.  
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Then, according to the covariance matrix R , the eigenvalue, principal component 

contribution rate and cumulative variance contribution rate can be calculated, and the number 

of principal components can be determined. Because R  is a positive definite matrix, the 

eigenvalues are positive, namely,
1 2 ... 0n      , and the corresponding normalized 

eigenvectors are 
1 2 3
, ,...,   . The eigenvalue is the variance of each principal component, and 

its value reflects the influence of each principal component. The contribution rate of the 

principal component can be calculated as follows: 

 

 
1

/
n

i i ii
  

=
=                                                    (3) 

in the formula: 
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i
 — the contribution rate of the principal component 

i
z . 

Based on multiple linear regression theory, the following model can be established: 

 

0 1 1 2 2 ... s sY b b x b x b x = + + + + +                                           (4) 

 

The quality variable Y was regressed with respect to d (0<d<p) principal components: 

 

1 1 2 2
ˆ ˆ ˆ ˆ...

d d
Y z z z  = + + +                                                 (5) 

 

At this point, put (1) into (5), the relationship between process variables and quality 

variables is expressed as: 

 

 1 1 2 2
ˆ ˆ ˆˆ ...

s s
Y x x x  = + + +                                                 (6) 

 

The relationship between the coefficient ˆ
i

  and the parameter 
i

b  in the original model: 

 

ˆ ( 1, 2,..., )Y

i i

i

S
b i s

S
= =                                                (7) 

0

1

s

i i

i

b Y b x
=

= −                                                    (8) 

in the formula: 

Y
S —Standard deviation of Y; 

i
S —Standard deviation of ˆ

i
 ; 

Y —Mean value of Y; 

iX —Mean value of 
i

x . 

Therefore, the parameters in the original regression model can be calculated. Then, put 

(7) and (8) into (4), the final regression model can be obtained.  

3. Adaptive Principal Component Regression with Selective Integration 
of Multiple Local Models 

In this study, in order to solve the problem of dynamic in industrial process, SIMV-PCR is 

proposed. The dynamic problem of industrial process brings about a series of problems such 

as model degradation. The traditional MW model can capture the latest local state of the 

process. However, the industrial process information obtained in this way has limitations and 

the prediction of quality variables is not comprehensive enough. Therefore, the selective 

integration of local models can effectively utilize the past window information. In this way, 

we can not only effectively use the latest process state information to avoid model degradation, 

but also prevent a single local model from causing prediction bias. In this part, SIMV-PCR is 

introduced in detail from the two aspects of local model set update and integration. 

3.1 Adaptive Strategy 

In terms of model updates, appropriate window length is selected to divide the whole process 

state into local model regions, and a concise local PCR model set is obtained firstly. As the 
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factory continues to run, providing continuous time samples directly causes the information 

contained in the current process state between adjacent windows to be too similar, in which 

case the corresponding sub-model can be considered identical, resulting in computational 

redundancy. If the most similar model is built repeatedly and the original model with different 

properties is abandoned, the prediction accuracy of the quality variable will be unsatisfactory. 

 

build a new local 
model  fnew 

Add new window data and models to the 
dataset and model set, respectively

Window set
 NUM>Q?

Integrated model to 
predict quality 

variables

Delete the oldest 
window data

discard the old
redundant 
subdataset
and model

N

Y

N

R n e w

ini ini ini

initial window

=[ , ]W X Y

new window

=[ , ]new new newW X Y

R ini

2

?  

:

new ini

T test and test

R diffe

significa

r from R

ntly

− −

Initial data set and 
model set

Y

 
Fig. 1.  Flowchart of the adaptive approach based on statistical hypothesis testing and moving window 

 

With statistical hypothesis testing and moving window as the main methods, this adaptive 

strategy considers the variance of the first and second order information of the prediction 

residuals, using t -test and 2 -test respectively, which is shown in Fig. 1. In this study, we 

consider only the single output process, that is, 1r = , where r is the number of quality variables. 

At the beginning, the initial window dataset { , }
ini ini ini

W X Y=  was used, and the length of the 

window dataset was set as w, indicating that there were w continuous time samples, on which 

the regression model 
ini

f  was constructed, where w s

iniX R


  and 1w

iniY R


  represent the input 

matrix and output matrix respectively. Assuming we have identified and stored ( 1)K K 

regression models
1 2{ , ,..., }Kf f f , this means that there are ( 1)K K   data regions

1 2
{ , ,..., }

K
W W W , 
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each containing w  continuous time samples. On the premise of keeping the generality, the 

local model was identified in the previous local model region extraction and obtained 

ini K
W W=  and 

ini K
f f= . Then, 

ini
W  is moved a sample step forward to get a new moving 

window dataset { , }new new newW X Y= . 

The predicted residuals 
ini

R  and 
new

R  calculated based on 
ini

f  and 
newf  respectively can 

be expressed as 

 

( )
ini ini ini ini

R f X Y= −                                                             (9) 

 

( )
new new ini ini

R f X Y= −                                                          (10) 

 

If the difference between 
new

R  and 
ini

R  is not significant, the performance of 
newf  on 

new
W  

is considered to be the same as that of 
ini

f  on 
ini

W . That is, the samples in 
ini

W  and 
new

W  come 

from the same local process state. Therefore, the old model can be replaced by the 

establishment of a new local model based on the new window dataset. Once the 
new

R  deviates 

significantly from the 
ini

R , a new local process state distinct from the representation of 
ini

W  is 

identified. Then, add it to the current window dataset and model set. And the window will be 

continuously shifted forward to calculate the new 
new

R  to update the stored dataset and model 

set in this way. The key question that needs to be addressed is how to determine whether there 

is a difference in evidence between 
new

R  and 
ini

R . According to the idea of hypothesis testing, 

we transformed this problem into testing whether the mean and variance of two residuals were 

significantly different. In this paper, two statistical testing methods, t -test and 2 -test, were 

used simultaneously. 

Assuming that both 
ini

R  and 
new

R  are normally distributed, we first construct T  statistics 

and 2  statistics as follows: 

 

( ) /new ini new
T w R R = −                                                   (11) 

 
2 2 2

( 1) /new iniw  = −                                                      (12) 

 

        In the formula: 

newR — the mean of 
new

R ; 

new
 — the standard deviation of 

new
R ; 

iniR — the mean of 
ini

R ; 

ini
 — the standard deviation of 

ini
R ; 

w — the number of window samples; 

According to the hypothesis statistical theory, the model redundancy can be checked by 

the following equations： 

 

1
: new iniH R R=                                                       (13) 
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2 : new iniH  =                                                          (14) 

 

If  (13） and （14） are both satisfied, then, the distribution of 
new

R and is 
ini

R  considered 

to be the same. How to verify that the hypothesis is satisfied, generally, there are two 

conditions that need to be fulfilled: 

 
2| | tT and                                                     (15) 

 

in the formula: 

t
 — The threshold value of the T - statistic for the given significance level 

t
 ; 

 — The threshold value of the 2 - statistic for the given significance level 
  ; 

That means the probability satisfies 

 

{| | } 1
t t

P T   = −                                                     (16) 

 
2{ } 1P     = −                                                   (17) 

 

Therefore, only when both T  and 2  are in their in the receiving domain, respectively, 

new
R  and 

ini
R  are considered consistent enough. Otherwise, 

new
W  is supposed to differ from 

ini
W , namely, there is a new local process state. Then, a new model expressed by 

newf  can be 

constructed based on the corresponding local data set { , }new new newW X Y= . 

As mentioned above, the identity of two local models is verified by hypothesis testing. In 

the process of online prediction, an integrated approach is adopted in order to include more 

process information, that is, a set of local models with difference needs to be saved here. In 

this way, the creation of a sub-model based on the new local data obtained by moving a sample 

step, requires an identity comparison with each sub-model in the stored model set. The 

comparison process is repeated K times for each new window. If a local model in the model 

set is identical with the new one, the new one will replace the original one. If it does not exist, 

the new model is added directly to the model set. A potential problem with this approach, 

however, is that the number of local models is increasing as the factory continues to run and 

provide continuous data every day. If the number of models is too large, the computational 

complexity will increase. Therefore, there is a need to set a maximum value for the number of 

model sets. Here, Q represents the maximum value of the model set. { , }
new new

W f  represents a 

truly new local process state only if it is different from all the models in the model set, namely, 

{ , }k kW f  for 1 k K  . In this case, { , }
new new

W f  is added to the local model set as the latest 

process state, meanwhile, the oldest is discarded. However, if there is a local process state 

{ , }k kW f  similar to { , }
new new

W f , where {1,2,..., }k K , then { , }k kW f  can be replaced by 

{ , }
new new

W f . In this way, the updated model set can be obtained.  

3.2 Selective Integration Based on PCR 

In terms of integration of local models, the sub-models prepared after the model update are 

selectively combined to estimate the output of each query sample. In this part, the local model 

is multiple linear regression model based on PCA. The concept of traditional integration 

learning means that during the prediction process of the query samples, the output results of 
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all local models selected in the adaptive update process need to be combined, which is 

 

1
( ) ( )

K

new k k newk
f x f x

=
=                                                   (18) 

 

in the formula: 

( )
n

f x — The final prediction value; 

( )k newf x — The output value of the kth local model. 

Given 
newx , 

k
  represents the combination weight assigned to the kth model 

k
f , which 

satisfies: 

 

1
0 1

K

k kk
and 

=
 =                                                (19)  

 

However, it is a difficult task to find an optimal weight for each local model. In this part, 

k
  can be calculated by Bayes’ rule in the following formula: 

 

1

( | ) ( )
( | )

( | ) ( )

new k k

k k new K

new k k

k

p x f p f
P f x

p x f p f



=

= =


                                      (20) 

 

In this paper, it is assumed that the prior probability of each model is the same, given as 

follows: 

 
1

( )kp f K
−

=                                                        (21) 

 

And the ( | )
k new

P f x  is used to describe the predictive power of the kth window model in 

the model set. Therefore, ( | )
k new

P f x can be standardized, and given as follows: 

 

1

1

( | ) ( )
K

new k k k

k

p x f   −

=

=                                              (22) 

 
2

k krmse −
=                                                     (23) 

 

in the formula: 

k
rmse — The root mean square error of the kth window model. And 

k
rmse  can be used to 

estimate the predictive power of the model. 

In fact, selective integration learning forces the unselected model to be zero to filter out 

the negative effects of the prediction of quality variables. In this way, the accuracy of quality 

variable prediction can be improved. SIMV-PCR captures the local latest state of a process by 

using the moving window strategy. And it makes full use of the previous window information, 

select a group of local states with differences to establish multiple local models. Finally, these 

local models are integrated to predict the quality variables through Bayesian estimation rules. 

Thus, it can be seen that for the time-varying problem of industrial processes, SIMV-PCR can 

not only deal with the model degradation problem by moving the window, but also reduce the 

prediction error by using the integration method. In addition, in order to quantitatively evaluate 

the predictive performance, the following aspects are analyzed: 
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RMSE— the root mean square error of query sample; 

MAE— the maximum relative error of query sample; 

MRE— the mean relative error of query sample.  

4. Experimental Analysis 

In order to effectively verify the effectiveness of SIMV-PCR, this section will carry out 

experiments from two aspects: numerical case and actual industrial data measurement.  

4.1 Numerical Example 

In this section, a numerical example is used to verify the feasibility and effectiveness of the 

proposed SIMV-PCR method. The numerical example data is generated by the following 

formula: 

 
2

1 2 3 4 55 *10 sin( ) / cos( )y x x x ax x
−

= + + +                                          (24) 

 

in the formula: 

y — The output value; 

1
x — Input variable 1, value range from -10 to 10; 

2
x — Input variable 2, value range from -10 to 10; 

3
x — Input variable 3, value range from -10 to 10; 

4
x — Input variable 4, random numbers that belong to the standard normal distribution; 

5
x — Input variable 5, the value is equal to 

2
x  plus 

3
x ; 

a — The coefficient of 
4

x , by changing its size to produce deviation. 

Here, the range of input variable 1, 2, and 3 is set from -10 to 10 for no special 

reason，which can be changed. In the numerical example, the data drift is generated by 

changing input variable 4 to simulate the data drift caused by time change in the industrial 

process. In order to achieve it, the coefficient a is going to change over time.                                                

In the numerical case, the size of the window is set to 20 and the maximum value of the 

model set is set to 3. The number of principal components is also set to 3. The value of a is 

changed every 50 samples. A total of 120 samples were selected during the experiment. The 

first 20 samples were used to establish the initial window model, and the last 100 samples were 

used as query samples.  
 

Table 1. Prediction performance based on various soft sensors in numerical example 

Soft Sensor MAE RMSE MRE(%) 

PCR 1.2003 0.6364 53.62 

MV-PCR 1.0378 0.3257 20.71 

GP 1.7697 0.9923 86.67 

SIMV-PCR 0.3910 0.2455 16.32 

 

As is shown in Table 1, the prediction results of PCR, grey prediction (GP), moving 

window-based principal component regression (MV-PCR) and SIMV-PCR are compared 

comprehensively. From the comparison of the data, it is not difficult to see that SIMV-PCR is 

the best of the four methods. 
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(a) Predicted y-value by PCR 

 
(b) Predicted y-value by MV-PCR 

 
(c) Predicted y-value by SIMV-PCR 

Fig. 2.  Comparison of prediction results of numerical cases 

 

For a further visual comparison, the prediction curves of several methods are shown in 

Fig. 2. With the drift of process state, it is obvious that the model based on PCR degrades 

seriously shown in Fig. 2(a). And by MV-PCR, the model degradation problem has been 

improved. As shown in Fig. 2(b), the output prediction curve of MV-PCR can follow the real 

value well. However, RE, MAE, RMSE can be improved further. It can be clearly seen that 

the prediction of output value using SIMV-PCR has been greatly improved in Fig. 2(c). With 

regard to RE, MV-PCR was reduced by 61.4% compared to PCR, yet SIMV-PCR was reduced 

by 69.6%. The MAE of MV-PCR was down to 1.0378, yet that of SIMV-PCR was 0.3910. In 

other words, the MAE of SIMV-PCR was down 62.3% compared to MV-PCR. About the 

RMSE, SIMV-PCR is 24.6% less than MV-PCR. It can be seen that SIMV-PCR has strong 

generalization ability. 
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Fig. 3.  Comparison of absolute errors of different methods in numerical examples 

 

      To further give sufficient inference, the absolute error curves of PCA, MV-PCA and 

SIMV-PCA are compared in Fig. 3. It can be seen that the absolute error curve of SIMV-PCA 

is the most stable and the fluctuation is the least. PCA and MV-PCA have relatively weak 

generalization ability in the face of state offset. 

4.2 Tennessee Simulation Model 

Downs et al. established the Tennessee Eastman (TE) simulation system based on the actual 

chemical process, and the detailed process structure is shown in Fig. 4. In the research field of 

process control, TE process is often used in the research of quality variable prediction, process 

monitoring and fault detection because it can better reflect many typical characteristics of the 

actual industrial production process. 

TE process is mainly composed of five modules: reactor, condenser, compressor, gas-

liquid separator and stripper. The data set consists of measurement variables and operation 

variables. The whole reaction process involves eight substances, including XA, XB, XC, XD, 

XE, XF, XG and XH. Among them, XG and XH are the final products. The reactions involved 

are as follows: 

 

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ),

2 ( ) 2 ( ).

XA g XC g XD g XG liq

XA g XC g XE g XH liq

XA g XE g XF liq

XD g XF liq

+ + →

+ + →

+ →

→

                                (25) 

 

The whole TE process involves 11 operating variables and 41 measurement variables, 

among which the measurement variables can be further subdivided into 22 continuous process 

variables and 19 discontinuous component variables. In the process, real-time monitoring of 

XG and XH of the final product lays a foundation for effectively improving the output product 

quality control system. This paper mainly studies the nonlinear system with multiple inputs 

and single outputs. All the 19 discontinuous component variables are obtained by the 

component analyzer, which is relatively complex. Therefore, a 33-dimensional variable is 

selected as the input, that is, it is composed of 11 operating variables and 22 continuous process 

variables, and the final XG component content is selected as the output variable, so as to 

establish the prediction model. 
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Fig. 4.  TE process flow chart 

 
Table 2. Prediction performance based on various soft sensors in Tennessee example 

Soft Sensor PCR MV-PCR SIMV-PCR 

RMSE 0.5814 0.5893 0.5738 

MAE 1.6116 1.9987 1.5966 

MRE(%) 0.89 0.87 0.87 

R2 -0.3213 -0.3575 -0.2872 

 

In this section, the Tennessee simulation data are used to verify the above method. In the 

verification process, PCR and MV-PCR were mainly compared, and it was found that the 

prediction accuracy of the three was not significantly different. The prediction results of PCR, 

MV-PCR and SIMV-PCR under one of the same conditions are shown in Fig. 5, where the 

number of principal components is set as 17. And under this condition, the evaluation indexes 

of the three prediction models are also given in Table 2. R2 stands for the determination 

coefficient, which can reflect the quality of the fitting. The R2 of all three methods is negative, 

which indicates that the Tennessee simulation data is not suitable for using SIMV-PCR for 

regression. 

                
(a) Predicted the composition of XG by PCR 
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(b) Predicted the composition of XG by MV-PCR 

  

(c) Predicted the composition of XG by SIMV-PCR 

Fig. 5.  Comparison of prediction results of TE data 

4.3 Octane Value Prediction 

In order to verify the validity of the method by measuring the industrial data, the octane 

number of gasoline was used in this selection. Because gasoline is an extremely flammable 

and explosive liquid, it is important to control the intensity of combustion in order to allow it 

to burn smoothly in the engine. This shows the anti-knock index of gasoline, also known as 

the anti-knock index, and the anti-knock performance is proportional to the amount of 

isooctane. For ease of use, the amount of octane in gasoline is used to represent the antiknock 

index and also the type of gasoline. As the most important quality index of gasoline, octane 

value need to be measured accurately. However, the traditional laboratory testing methods 

whose problems contains large sample consumption, long test cycle and high cost, cannot be 

suited to production control, especially the online test. The near infrared (NIR) spectroscopic 

analysis method, as a quick analysis method, has been widely used in agriculture, 

pharmaceutical, biological, chemical, petroleum products and other fields. Its advantages are 

nondestructive testing, low cost, no pollution, online analysis, more suitable for production 

and control needs. 

In this study, a soft octane value measurement model is established based on the near 

infrared spectrum data of gasoline. In addition, for the training data set and the test data set, 

the corresponding octane value of near-infrared samples was obtained through laboratory tests. 

4.3.1 Parameter Selection 

During the SIMV-PCR experiment, a total of 460 test samples obtained in continuous time 
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were selected. During the training process, the first 160 samples were selected as training 

samples in the offline operation stage (train –X and train –Y) to train the original stored data 

set and model set，where statistical hypothesis testing and moving window theory were used 

here. Then, the remaining 300 samples are used as query samples. The window size of the 

method is set to 100, and the training dataset is updated as the window slides along the entire 

dataset.  

 
Table 3. Root mean square error and maximum absolute error results under various parameters 

Number of 

Models 

Number of 

Compoments 

 20 25 30 35 40 45 50 

21 

RMSE 0.3510 0.3483 0.3450 0.3417 0.3405 0.3391 0.3389 

R2 0.7812 0.7846 0.7886 0.7926 0.7940 0.7958 0.7960 

MAE 1.7450 1.7016 1.6369 1.5868 1.6736 1.6928 1.7448 

22 

RMSE 0.3543 0.3510 0.3471 0.3449 0.3432 0.3428 0.3436 

R2 0.7770 0.7811 0.7859 0.7887 0.7907 0.7913 0.7903 

MAE 1.8504 1.8412 1.7950 1.8072 1.8509 1.9153 2.0025 

23 

RMSE 0.3443 0.3418 0.3397 0.3394 0.3375 0.3371 0.3381 

R2 0.7894 0.7925 0.7950 0.7954 0.7977 0.7981 0.7969 

MAE 1.5769 1.5942 1.5741 1.6528 1.6752 1.7543 1.8580 

24 

RMSE 0.3421 0.3379 0.3331 0.3332 0.3351 0.3334 0.3350 

R2 0.7922 0.7972 0.8029 0.8028 0.8006 0.8026 0.8006 

MAE 1.6038 1.6123 1.5717 1.5543 1.5390 1.5244 1.6703 

25 

RMSE 0.3346 0.3308 0.3267 0.3243 0.3258 0.3262 0.3265 

R2 0.8011 0.8057 0.8104 0.8132 0.8115 0.8110 0.8107 

MAE 1.6099 1.6166 1.5713 1.5431 1.5237 1.5094 1.4998 

26 

RMSE 0.3432 0.3338 0.3253 0.3187 0.3150 0.3131 0.3112 

R2 0.7908 0.8021 0.8120 0.8198 0.8238 0.8259 0.8280 

MAE 1.7152 1.5827 1.5417 1.5152 1.4957 1.4783 1.4631 

27 

RMSE 0.3481 0.3378 0.3269 0.3175 0.3115 0.3091 0.3073 

R2 0.7848 0.7973 0.8102 0.8209 0.8276 0.8302 0.8323 

MAE 2.1940 1.8534 1.5130 1.4640 1.4287 1.3933 1.3632 

28 

RMSE 0.3615 0.3512 0.3418 0.3338 0.3252 0.3208 0.3170 

R2 0.7679 0.7809 0.7925 0.8021 0.8121 0.8172 0.8215 

MAE 2.5219 2.2121 1.8836 1.5016 1.3679 1.3144 1.3758 

29 

RMSE 0.3812 0.3661 0.3567 0.3468 0.3351 0.3299 0.3267 

R2 0.7419 0.7619 0.7740 0.7863 0.8005 0.8067 0.8104 

MAE 3.0528 2.6543 2.3827 2.0152 2.0860 1.4449 1.4707 

30 RMSE 0.3840 0.3741 0.3658 0.3554 0.3440 0.3382 0.3390 
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R2 0.7381 0.7514 0.7623 0.7757 0.7898 0.7968 0.7959 

MAE 3.3746 3.1749 2.9410 2.5849 2.0627 1.5753 1.8604 

 

During the training, in order to make full use of the past windows, selective integrated 

moving window PCR（SIMW-PCR） was developed. We set the maximum number of 

reserved windows to be no more than Q, and the Q here needs to undergo multiple experiments. 

Proper window size can better monitor the drift of process state and achieve better prediction 

effect. If the window size is too large, it will lead to calculation redundancy and increase the 

amount of calculation. If the window size is too small, it will also lead to loss of important 

sample information. At the same time, in order to make the prediction more accurate, there are 

certain requirements for the selection of principal component number d. Trough Table 3, the 

setting of parameters Q and d of the experimental process can be optimized. After the training, 

300 test sets were used to test the model, and MAE, R2 and RMSE were used to measure the 

performance of the soft measurement model. MAE and RMSE take into account the difference 

between the predicted value and the true value, and by using R2 analysis, the difference 

between the true value of the problem itself can be further considered. 

In the experiment, only a single output path was considered, and the number of process 

variables in the near infrared data of gasoline octane number was 201. It was found that it was 

a watershed for the selection of the number of principal components, when the cumulative 

contribution rate of the principal component reached 99.9%. When the contribution rate was 

lower than that, the prediction accuracy significantly decreased, and the number of principal 

elements was 20. Then, taking five models as a unit, in Table 1 the experimental prediction 

results are only partially given, where the number of principal elements is from 21 to 30, 

meanwhile, the number of model sets from 20 to 50. The comparison shows that the result is 

better when the number of principal elements is 27.  

However, as can be seen from the Table 3, when the number of principal components is 

fixed, the prediction effect presents a curve that rises first and then falls as the number of 

models in the model set increases. Therefore, when the number of pivot elements is 27, the 

number of models is set to 50, which is not optimal. In order to get the best results，we 

continue the experiment and finally set the maximum number of models in the model set to 

60. As shown in Fig. 6, when the number of principal components is 27, the trend of RMSE 

and MAE is given with the change of the maximum value of the local model. With the increase 

of Q, RMSE and MAE decreased rapidly at the beginning and became stable at Q =40. As 

shown in Fig. 6, Q=60 is finally selected, meanwhile, R2 is as high as 0.8350. This not only 

makes the generalization ability of the model better, but also avoids complex computation 

problems. 

 
Fig. 6.  Impact of Q with d=27 
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4.3.2 Analysis of Predictive Indexes 

Here, to prove the superiority of SIMV-PCR in solving the time-varying problem of industrial 

process, PCR, GP and MV-PCR are also compared in this case. In addition, kernel principal 

component analysis (KPCA), PCA-GP are also added. For the selection of the number of 

principal components, all of PCR, MV-PCR, PCA-GP and KPCA are determined to be 27. 

The prediction results of the SIMW-PCR and the other four methods are shown in Table 4. In 

order to effectively illustrate the higher prediction accuracy of SIMV-PCR, four indexes 

including MAE, R2, RMSE and MRE are comprehensively compared here. As is shown in the 

Table 4, the MAE of PCR is up to 4.8926. For the maximum absolute error, the MV-PCR 

model based on the latest window data is 23.9% lower than PCR. However, the predicted value 

obtained by using SIMV-PCR, MAE was reduced by a full 76.9 percent. Then, for RMSE, 

MV-PCR decreases by only 12% compared with PCR, while SIMV-PCR decreases by 34.8%.      

In addition, regarding the improvement of mean relative error, MV-PCR has no optimization 

compared with PCR, but MRE is reduced by SIMV-PCR. Too many process variables lead to 

too large deviation of the predicted results of GP. After principal component extraction, the 

generalization performance was greatly improved. Then, MW is added into PCA-GP to further 

improve the predictive power. However, it was still not as good as SIMV-PCR. Similarly, 

SIMV-PCR also has great advantages for R2. From what has been mentioned above, it is 

obvious that SIMV-PCR is better than other soft measurement methods in predicting quality 

variables. 
 

Table 4. Prediction performance based on various soft sensors 

Soft Sensor MAE RMSE MRE(%) R2 

PCR 4.8926 0.4678 0.27 0.6113 

MV-PCR 3.7217 0.4113 0.27 0.6996 

GP 32.2743 2.0674 0.46 -0.5921 

PCA-GP 2.4989 0.3651 0.25 0.8012 

MV-PCA-GP 2.3174 0.3543 0.25 0.8033 

KPCA 2.9830 0.3261 0.24 0.8336 

SIMV-PCR 1.1324 0.3048 0.23 0.8350 

4.3.3 Comparison of Prediction Curves 

The predicted indicators can only show the average process of the whole, but cannot show the 

forecast situation of each sample. Therefore, this part will selectively observe the prediction 

curve of several soft measurement methods. 

As shown in Fig. 7, the blue curve represents the prediction results of the PCR model. As 

time goes by, the error of the model established with the initial data starts to increase due to 

data drift, machine aging, etc. The red curve represents the prediction results of the MV-PCR 

model. As the latest window data is used to build the model, MV-PCR is much better than 

PCR. However, depending on a single window, the information of the industrial process is not 

contained enough, which is why improvements in prediction accuracy are limited. As for 

sample 180, PCR and MV-PCR both produced large errors, PCR derived from model 

degradation, while MV-PCR errors were caused by insufficient global characteristics 

contained in local information. SMV-PCR results well corrected this error. Therefore, through 

the integration window approach, more effective information in the industrial process can be 

retained. Obviously, it can be seen that the yellow prediction curve representing SIMV-PCR 

fluctuates smoothly and does not show excessive peaks. 
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Fig. 7.  The testing error curves of PCR, MV-PCA and SIMV-PCA 

 

 
Fig. 8.  Quality prediction based on PCR 

 

 
Fig. 9.  Quality prediction based on MV-PCR 

 

 
Fig. 10.  Quality prediction based on SIMV-PCR 
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Fig. 8, Fig. 9 and Fig. 10 respectively show the changes of PCR, MV-PCR and SIMV-

PCR on the tracking process state. With time migration, the prediction model established based 

on PCA is not good at dealing with the state migration and tracking the state migration with a 

large deviation. Then, MV-PCR can obtain better prediction results than PCR by combining 

the latest state information to track the process state. For SIMV-PCR, not only are the latest 

data samples included for model updates, but previous information Windows are also taken 

into account. Finally, SIMV-PCR can be used to obtain the process state tracking curve with 

a relatively small deviation. 

As mentioned above, the adaptive soft measurement model based on SIMV-PCA can 

achieve satisfactory predictive performance in the industrial process. 

5. Conclusion 

Aiming at the nonlinear and time-varying problems of industrial processes, an adaptive soft 

measurement method has been proposed, referred to as the SIMW-PCR, which combines local 

learning strategy and selective integrated learning strategy at the same time. First of all, an 

adaptive localization method based on combining PCR and moving window is proposed to 

construct local model set. The move window is used to partition local areas. Because of the 

redundancy of retaining window information, the soft measurement accuracy is improved, but 

the computational complexity is large. Then, based on the theory of hypothesis testing, a 

selection method is proposed to deal with the problem with increasing the number of models, 

which can determine whether the window dataset should be retained or not. After that, most 

information models with some difference between each other can be integrated into an 

effective prediction model through Bayesian’s quality evaluation rules. A real industrial case 

has demonstrated the priorities of the proposed adaptive quality prediction method through 

comparing with several existed adaptive soft sensors. However, the selection of some 

parameters, such as the default value of the number of windows, needs further study. In 

addition, the industrial data types applicable to this method also need further analysis. 
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